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i. Introduction. A model for flow in a narrow flux tube was suggested in [i] in order 
to study the properties of magnetohydrodynamic plasma flows in channels. Steady-state axial- 
ly-symmetric flow of a nonviscous non-heat conducting ideally conducting medium in a trans- 
verse natural magnetic field is described by the equations 

pvs = const; ( 1 . 1 )  

v2--~- + ?P/P + H2 ----const; ( 1 . 2 )  
2 7 -- t 4ap 

H/pr = const; ( 1 . 3 )  

p/pV = const. ( 1 . 4 )  

Here s = 2vfr is tube cross-sectional area; r is its average radius; f is transverse dimen- 
sion (Fig. I). Equations (1.2)-(1.4) describe the change in flux parameters along the trajec- 
tory r = r(z). Generally speaking Eq. (I.i) contains values of p and v averaged over the 
tube cross section, although in view of the assumed smallness of f it is possible to consider 
them coincident with values of p and v in trajectory r(z). 

In studying flow in channels there is extensive use of a hydraulic (quasi-uniform) ap- 
proximation in which all M_HD-values are averaged over the cross section. A review of the 
results may be found for example in [2]. An undoubted virtue of the hydraulic approximation 
is the possibility of considering the effect on flow of various physical factors (dissipation 
processes, an external electromagentic field, etc.), in this model channel geometry affects 
flow similar to normal gas dynamics. Another situation arises in studying flow in a narrow 
flux tube. One one hand this model rests on the results of equations for an ideal magnetic 
hydrodynamic (Eqs. (1.2)-(1.4) are precise conservation rules which are fulfilled along the 
trajectory). Therefore, if it is very difficult for example to consider dissipation factors. 
Equations are given in [3] for a plasma with finite conductivity, but with the stringent 
assumptions that the trajectory coincides with equipotentials (with finite conductivity that 
is automatically fulfilled). On the other hand, in Eqs. (1.1)-(1.4) there are precise MHD- 
values in which the trajectory is of arbitrary shape. This makes it possible within the 
scope of a model for flow in a narrow tube to consider essentially two-dimensional effects. 
It is shown in [4] that with certain assumptions about the shape of narrow tubes it is 
possible to obtain conditions for absence in a channel of electric current eddies expressed 
in the form of limitations on local flow parameters. 

From a mathematical point of view the 'quasi-two-dimensionality' of the flow model in a 
narrow tube is due to the fact that all the values in Eqs. (1.1)-(1.4) are considered at 
points of two-dimensional space with coordinates (z, r(z)). From a physical viewpoint this 
model considers an important situation which in principle it is not possible to consider with 
averaging over the cross section: along a trajectory of arbitrary shape there is a change 
not only in the intensity of the magnetic field, but also in the length of its force lines. 
In other words, in equations of motion there is consideration not only of the magnetic pres- 
sure gradient, but also of the term ~(Hv)H, which means that the field performs work in shorten- 
ing its force lines [i]. 

As a well-known example we consider the question of a change-over in terms of signal 
velocity. By differentiating ~qs. (1.1)-(1.4) and excluding dp, dp, dH, we obtain [i] 

__c2~ dv 2d(fr)_~c~d (f/r) 
( v2 m l v  =cs "-77- [/r ( 1 . 5 )  

., r ~ b ,  . 
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Fig. i 

(c~ = Xp/p, ic~ = H2/(4~P)' C2m = c2s + c2)'a In bent tubes (r # const) a change-over in terms 

of local signal velocity occurs with c = >> c 2 (gas dynamic flow) at the point of a minimum for 
s a 

function fr (cross-sectional area), and with c 2 << c 2 (flow in a strong magnetic field) at a 
s a 

point of the minimum of function f/r. In a tube with r = const or in the case of plane flow 
(which formally corresponds to r § ~) the nature of flow is determined by the behavior of f, 
i.e., in fact the cross-sectional area, and presence of a magnetic field does not affect the 
position of the point of a change-over in terms of signal velocity. 

Features are considered in the present work for flow of a plasma in a narrow flux tube 
which arises as a result of curvature of its central line. In addition, the question is 
studied of existence of steady-state flow in narrow tubes. 

2. Features of Flow in Bent Tubes. We rewrite (1.5) in the form 

l )  dv_~. = d/ t - -  ~ dr (M = 1 t + a r ( 2 . 1 )  

Here M = v/c m is magnetic Mach number; a = y~/2; ~ = 8~p/H 2. According to Eqs. (i.i)-(1.4) 
each MHD-value may be expressed in terms of functions r(z), f(z), and constants of equations 
which are combinations of input values P0, v0, H0, P0, r0, f0. The same is also correct for 
function ~(z). Consequently, the position of the critical cross section (in which a change- 
over is possible in terms of signal velocity) in the general case is determined not only by 
tube geometry (functions r(z) and f(z)), but also by flux input parameters, this assertion 
may be illustrated by the following example. Since from (1.3) and (1.4) it follows that 

~p2-Vr 2 ~ cons t ,  (2.2) 

then with ~ = 2~ = ~0(r0/r) 2 it is possible to write the right-hand part of (2.1) in the 
form of a total differential. Finally we find that with ~ = 2 a change-over in terms of 
signal velocity occurs in section z,, where 

r f / ( r  2 + ~or~) = rain.  ( 2 . 3 )  

It is evident that (2.3) determines the implicit dependence z,(~0). Here and subsequently 
indices 0 and * denote values which relate to the initial and critical cross sections, respec- 
tively. However, if functions r(z) and f(z) are such that fr and f/r behave in the same way 
and have a minimum at the same point z ~ then according to (1.5) z, agrees with z ~ and it 
does not depend on ~0. 

In gas-dynamic flow the directions for the change in density and velocity in a narrow 
tube are different. In MHD-flow they may coincide. In fact, by differentiating Eqs. (i.i)- 
(1.4) and excluding dp, dv, dH, we have the relationship 

-~= i--~-~_a--M 2 --M-T, (2.4) 

which we shall consider together with (2.1). It can be seen that in normal gas dynamics 
(a + ~) always dpdv < 0. This is also fulfilled for MHD-flow in a tube with r = const. In 
a tube with r ~ const a situation is possible when dpdv > 0. Accelerating regimes with den- 
sification are observed in calculations for steady-state two-dimensional plasma flows in 
channels [5]. In [i] such regimes are called anomalous. We clarify conditions for realiz- 
ing them, 
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Multiplying (2.1) and (2.4) we find that 

2 <,. __ [( [ <,, ] (M 2 -  t) ~ - -  [ \ t -}-a ] r -- Mg~ -- dr 

Consequently in an anomalous regime there is simultaneous fulfillment of the inequalities 

t+cc  / t+cz r > 0 ,  (2 .5 )  

o r  

( 2 _ M ~ ) ~  M 2 ~  ~t ~ - ~ d r  
l + c ~  - -  <SO, / i + ~  r < 0 .  ( 2 . 6 )  

The condition for compatibility of (2.5) is: 

t -- a dr [ 2/M 2 ~ dr 

or  

(M 2 -  t ) d r < O .  (2 .7 )  

Similarly the compatibility condition for (2.6) is: 

(M 2 -- l)dr > O. (2 .8 )  

Taking account  of  ( 2 . 5 ) - ( 2 . 8 )  i t  i s  p o s s i b l e  to  w r i t e  c o n d i t i o n s  fo r  t he  anomalous behav io r  
of  d e n s i t y :  

a) in an a c c e l e r a t i o n  regime (d r  > O) d r i <  O, 

(M2__I) t--~ d r <  df (2/M 2 ) dr ~ + ~ -  (M=--O-F<(M~--t)gT~--t ~ ;  

b) in a retardation regime (dr < 0), dr > 0. 

(2/M 2 ) dr d/ ( -- ~ dr 
(M ~ - 1 )  ~ - - i  -7 -<(M s - l ) - < ( M  s - t )  l + ~  r 

Thus, independen t  of  the  n a t u r e  of  f low,  i . e . ,  s u b - s i g n a l  (M < 1) or  s u p e r - s i g n a l  (M > 1) ,  
anomalous acceleration is only possible in ascending trajectories (dr > 0). 

In normal hydrodynamics acceleration or retardation is clearly defined by the direction 
of the change in thermal Mach number Maxa M s = v/c s. In MHD-flow the direction of increase 
in M, Ms, and parameter Ma, inverse to Alfven number (M a = V/Ca), along the trajectory may 

not coincide with the direction of an increase in velocity. In fact, from (1.1)-(1.4) there 
follow the relationships 

(M s _ I)dMM_= [ ~  t + (?-- t) ~ t + ~  + 1  ]df/ (2 .9 )  

[M 7 1 - - ( , - - t ) ~  t--~z ( ' - -2)(z]  dr 
- ~ ? ~  + ~ + (C+;,7 -7-; 

(M 2 -  t ) ~  t + ~ M S  f ~,t7 ?--2 I dr 
= -7-; O~ 

E7-- dMa (M__~_~ + ~1 ) d/ (M__~ _}_ t -- 2~z ] dr 
(M~-- l) ~,~o = -7--- ~ + ~  j-7-" 

Without giving the calculations similar 
(in the sense indicated) behavior of M, 

a) in an acceleration regime (dr > 

(2.10) 

(2.11) 

to those previously we wriie conditions for anomalous 
M s, Ma: 

0) dM < 0 with (~ - 2)dr < 0 and 

(M 2 - -  1) t - = dr _~L 
t T E  7 < ( M 2 - t )  < 

M ~ [1 -- (?-- 1) (z] + 2 t + (?-- 2) ~-- ~2 
t + a  

< (M 2 - -  1) M ~ [t + (V - -  i) ~1 + 2 (i + ~) 
dr 
r 
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dM~ < 0 with dr < 0 and 

l--c* dr 
( M 2 - - t ) T T ~  7 < ( M ~ - - t )  < ( M  2 - t )  

dMa < 0 with dr > 0 and 

dr 

t-l-c*-- 2 dr 

M 2 + 2 i ~  2c* 
t+c* '~_L. 

M 2 + 2 .r ' 

b) in a retardation regime (dv < 0) dM > 0 with (7 - 2)dr > 0 and 

~I ~ [I - (v - i) ~l + 2 i + (~ - 2) c* - c.2 
I +~z dr - - <  (M s -  I) M s [i + ( ? -  l) a] ; r 

< ( M  s t ) ~ < ( M ~  i l l - c *  e~ 
-- -- ITS7' 

dM~ > 0 with dr <2 0 and 

~--C* 

a~ <(MS - I) <(M ~ _  4~I--~ dr 
i+-e__~_M~ -7" ~'i~-c* '7"' 

dM= > 0 wi th& < 0 and 
i -- 2c* 

M2 + 2 -~ ~t--~ dr 1 a dr 
(M ~ -  1) < (M2-- 1) M2+2 r < ( M S - -  1)t T ~  ~- - r "  

I t  i s  n o t e d  t h a t  w i t h  u = 2 a l w a y s  dMdv > O. 

Thus ,  w i t h  u < 2 in  a s c e n d i n g  t r a j e c t o r i e s  a c c e l e r a t i o n  c l e a r l y  s p e c i f i e s  an i n c r e a s e  
in  M s ,  and r e t a r d a t i o n  a r e d u c t i o n  in  M and M a .  I n  d e s c e n d i n g  t r a j e c t o r i e s  a c c e l e r a t i o n  c l e a r l y  
s p e c i f i e s  an i n c r e a s e  in  M and N a ,  and r e t a r d a t i o n  s p e c i f i e s  a r e d u c t i o n  in  M s .  

F i n a l l y  we c o n s i d e r  a n a r r o w  t u b e  w i t h  a c o n s t a n t  t r a n s v e r s e  s i z e  f = c o n s t .  From ( 2 . 1 )  
we obtain 

(M =-I) ds dr 
v c*+l  r (2.12) 

The sign of acceleration at each point is determined by the nature of flow (sub-signal or 
super-signal), by the direction of the increase in function r(z), and by the value of ~ at 
this point. A change-over of function 8(z) through 2/7 with a uniform change in r(z) is 
accompanied by a change in the sign of acceleration, i.e., appearance of a local extremum in 
velocity. From (2.9) we obtain 

From (2.2) taking account of (2.4) we find that 

(M 2 ~)d~ [ ?--t-.-~-~ .~2"~ dr ( 2 . 1 4 )  
- -  --if-= 2 i+c*  v~vl j--;-. 

From expressions (2.12)-(2.14) it is possible to determine the direction of increase in v, 
M, and $ at any point in relation to their values at this point and the direction for the 
change in function r(z). Results of studies for 3/2 < y < 2 are presented graphically in 
Figs. 2 and 3 with dr > 0 and dr < 0,4respectively, and lines I and II correspond to 

M s = 2 (~ -2 )a  + I -  c.2 M2 = 2 ~  - i  + c*. 
(7--2) c*+(7-I)c* s - i  ' ? l+c* 

Arrows i n d i c a t e  the d i r e c t i o n  of change in  M 2 and a ( i . e . ,  6). In Fig. 2 in  a square 
bounded by s t r a i g h t  l i n e s  M = 0 and I ,  ~ = 0 and i ,  we have dM > 0, d~ < 0, e tc .  

For d e f i n i t e n e s s  we consider a tube with d2r/dz 2 < 0 a t  whose i n l e t  the flow i s  sub- 
signal. With s 0 < i it accelerates, and at the point of a maximum for function r(z) a 
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change-over is possible in terms of signal velocity. If a change-over occurs, then the flow 
continues to accelerate, but starting from some point ~ increases and with a = 1 the velocity 
reaches a maximum. With s 0 > 1 the sub-signal flow is retarded. As can be seen from Figs. 
2 and 3 depending on initial values of M 0 and a 0 such flow regimes are possible in which M 
increases in a retarding flow, and at the point of a maximum of function r(z) a changeover is 
possible through M = i. Other flow regimes are also considered in a similar way on the basis 
of Figs. 2 and 3. 

3. Existence of Steady-State Flows. In normal gas dynamics conditions for existence of 
steady-state flow in a quasi-uniform channel (Laval nozzle) are expressed by limitations on 
initial parameter Ms0: 

Ms0 and M~0 are determined by the condition for a change-over in terms of sound velocity c s 
in a critical (minimum) cross section. As shown above, in magnetohydrodynamics for a narrow 
tube of arbitrary shape the position of the critical cross section is previously unknown, 
and therefore the question of existence of steady-state flow should be considered separately. 

We rewrite the set of equations (1.1)-(1.4) in dimensionless form taking input values as 
measurement units for the corresponding values P0, Cm0, H0, P0, so, r0: 

v2 P/P ~o H z t M] i + %/(? -- t) ( 3 .  ! )  
Ors=M~ T+?-i I+% + p I§ + I+% ' 

H l p r  = t ,  p lpv = t .  

Here s = f r ;  s 0 = u With t h i s  s e l e c t i o n  of  u n i t s  f low in a tube wi th  p r e s c r i b e d  geom- 
e t r y  i s  de te rmined  by d imens ion l e s s  parameters  M0 and 60- We f i n d  wi th  what va lue s  of  t h e s e  
pa ramete rs  a s o l u t i o n  of  system (3 .1 )  e x i s t s  in  each tube c ross  s e c t i o n  ( i . e . ,  s t e a d y - s t a t e  
f low e x i s t s  d e s c r i b e d  by Eqs. ( 3 . 1 ) ) .  

Excluding  v, H, p from (3 .1)  we o b t a i n  an equation f o r  d e n s i t y :  

p3rf+pT+ ao [M 4 So ] M 2 (3 .2)  
. d+ oi+T= +l 

Since all of the rest of the MHD-values are clearly expressed in terms of p it is necessary 
to clarify conditions for existence of roots for Eq. (3.2). 

We consider the left-hand part of (3.2) as a function of F(p) with fixed r, s, M0, s0o 
It is easy to be sure that F(p) has a minimum with p = Pm' and the value of Pm is determined 
from the equation 

(~ 
3pmr 2 + a 0 ~ p m  = �9 (3 .3 )  

With any value of r, M0, s 0 this equation has a single positive root. For existence of roots 
of Eq. (3.2) it is necessary and sufficient that the following condition is fulfilled 

F(Om) <~ O. (3 .4)  
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If F(Pm) is a negative value, then Eq. (3.2) has the roots p_ and p+: p_ < Pm < P+, and 
F'(p_) < 0, F'(p+) > 0. By using an expression for M in dimensionless values 

M~ = (1 + %) M~ 
p ~  (%p~-1 + pp) ' 

we present (3.2) in the form 

O~ 0 ) t , 

+ ( M  ~ - -  1) p3r2 + ~ -  p~+l + _g_ pF (p) = 0, 

whence it follows that p+ corresponds to sub-signal flow, and p_ corresponds to super-signal 
flow. Thus, solving Eq. (3.2) at each point z we obtain two functions: p+(z) and p-(z). At 

point z,, where F(Pm) = 0 and M = i, their values coincide. Evidently the behavior of den- 

sity in the tube with z ! z, is clearly described by one of these functions, the choice of 
which determines M . With z > z, both solutions have a physical meaning. One of them des- 
cribes trans-signal flow, and the other regime in which there is no change-over in terms 
of signal velocity. 

We clarify the meaning of condition (3.4). We express M~ from (3.3) and we place it in 
F(Pm). Condition (3.4) is equivalent to 

O(p~)>~O, ( 3 . 5 )  

Function r has a minimum point x = i/s. Condition (3.5) is fulfilled for any Pm if 
~(i/s) > 0 or 

r2 ao 1 cco 
--+ <~t  + ~_--~. 
s y ~ t sV--1 

If this equality is not fulfilled, i.e. 

r ~ % i 
s ?--  tsV-1 

% (3.6)  > I + - -  ?--U 

then (3.5) satisfies the values of p from the ranges 

+ 
where P~ and Pm are roots of the equation ~(Pm) = 0, and for them there is fulfillment of 

P ~ < + < P ~ .  (3.7)  

0 is  found from (3.3)  w i th  No = O: Evidently Pm > Pm makes sense where Pm 

__3.Or~ % ~ +  i /~oW-1 % 
2 vm + 2 ?~]~Vm)  = i + ? _ i .  

Taking account of (3.6) we obtain 

3 r 2 ~o ? + t t % 
2 s + 2 y - - I s  v-1 > |  +~-i 

0 < i/s. Since ~(p~) > 0 it is possible to be certain immediately that and consequently Pm 

Pm~ < p~. Thus, acceptable values of Pm are contained in the ranges p~ < Pm _ < Pm, Pm _ > Pm'+ 

Taking account of (3.3) this means that with prescribed 60 acceptable values of M0 are 

contained in the ranges 0 < M0 iMP, M0 ~ M~ (M~ and M~0 are obtained with substitution in 

- +) 
(3.3) of Pm and Pm " 

By carrying out similar consideration in each tube cross section* we obtain functions 

*With r = const according to (3.3) Pm, and consequently M- and M +, are identical in all cross 
sections. In order to find limiting values of M 0 it is sufficient to solve the equation 
r = 0 in a known critical cross section Smi n. 
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M~(z) and M~. Apparently if M 0 is selected from the ranges 

0 < M o ~< Mmin, Mo/> M+ax 

(Mmin = minz MS" (z) ---- Mo" (z_), M+ax ---- maXz M+ (z) = M + (z+)), 

then a solution for Eq. (3.2) exists in any cross section. If M0 exactly equals one of the 

~ - + 
limiting values M-.mzn or ax' then correspondingly at points z_ or z+ values of Pm or Pm 

satisfy Eq. (3.2). This means that M(z-) = i or M(z+) = i. It is noted that the position 

of the point of change-over in terms of signal velocity appear to be connected with the 
complete collection of input values of dimensional MHD-values: P0, P0, v0, H0. 

Thus, in a tube with prescribed geometry and fixed input parameter B0 there is no 
steady-state flow regime in which M 0 takes a value of some open range depending on ~0 and 
geometry. It is possible to show that for a narrow tube in which functions fr and f/r have 
minima at the same point this range contains M 0 = i. In fact, according to (1.5) in such a 
tube a sub-signal flow at the inlet accelerates and super-signal flow slows down. By 
placing M . and M + in the first equations of set (3.1) and using (3.7) we obtain 

mln max 
-- + 

v_>Mmin, u+ < Mmax. 

Here v_ and v+ are velocities in the critical cross section relating to values of density 
~0. Since the input Mach number is a dimensionless value of inlet velocity, then these in- 
equalities imply 80. Finally, we mention special cases when equations which determine 
limiting values of Mach number may be written explicitly. From expressions (2.9)-(2.11) we 
have (see also for example [6]) with 8 >> 1 

u~ M~o 
with ~ << I 

(M~ + 2)3 _ (M~0 + 2)~ (#r)~, 

M~ ~ o  
with ? = 2 

(M ~+2)  ~ = ( M ~ + 2 )  ~ [ O + ~ o )  t l  s. 

J 

We recall that measurement units for values f, r, and s are their input values. In these 
special cases the position of the critical cross section is known, and therefore equations 
for limiting input values Ms0, Me0, M0 have the form 

M~o = k T )  ~ '  

(M~o + 2)~ _- 27 ~, - mi .  __i 
M~ ~ (/ ,F,)v r, ~ ~ ' 

(M~ 27[ ~o+"'2 ]2. 

s, = m i n  s; 
Z 

(3.8) 

(3.9) 

(3.10) 

In the last equation r, and s, satisfy (2.3). We can be sure that each of these equations 
has two roots bounding the ranges of impermissible values of Ms0, M~0, M0, and the ranges 
contain unity. If the input parameters take their limiting values, then velocity in the 
critical cross section reaches values of the local signal velocity. Therefore, equalities 
(3.8)-(3.10) are necessary conditions for a trans-signal change-over in each of the particu- 
lar cases considered. 

In conclusion it is noted that input parameter M 0 may be expressed in terms of 'integral' 
(for the given narrow tube) characteristic of flow: plasma mass flow rate m = p0v0s0, total 
current occurring in the tube I = H0cr0/2, and the difference in potential between trajectories 
bounding the tube U = H0v0f0/c. By using these values we find that 
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M~o ~- c4r~o mU 
4/~ ~ (~ + ~o/2)" (3.11) 

Thus, with fixed 8o the condition for trans-signal change-over determining M0 in relation 
to 80 and tube geometry is a condition for combination of integral values Q = mU/l 3. In 
particular we consider the case of 7 = 2. According to (3.10) with r = const the dependence 
of limiting value M0 on G0 disappears, and the limiting value of Qm is a linear function of 
G0. If a change in r cannot be ignored, then with f, << i from (3.10) we obtain approximate 
equations 

the first of which relates to sub-signal flow at the inlet, and the second the super-signal 
flow. By substituting them in (3.11) we find correspondingly 

+ C r 0 ~ ,  

Here s,, and r, are as before dimensionless values. Let them be independent of 80- Then 

Q~(~0) is a linear function; Qm(~0) is an increasing function if r~ > 2/3, and it has a mini- 

mum with G0 = 2/3 - 2 2 2/3 r,, if r, < 

The author thanks K. V. Brushlinskii for reading the manuscript and making many useful 
comments. 
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